Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(9): 1388-1395, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488507

RESUMO

Since 2014, the NCI has launched a series of data commons as part of the Cancer Research Data Commons (CRDC) ecosystem housing genomic, proteomic, imaging, and clinical data to support cancer research and promote data sharing of NCI-funded studies. This review describes each data commons (Genomic Data Commons, Proteomic Data Commons, Integrated Canine Data Commons, Cancer Data Service, Imaging Data Commons, and Clinical and Translational Data Commons), including their unique and shared features, accomplishments, and challenges. Also discussed is how the CRDC data commons implement Findable, Accessible, Interoperable, Reusable (FAIR) principles and promote data sharing in support of the new NIH Data Management and Sharing Policy. See related articles by Brady et al., p. 1384, Pot et al., p. 1396, and Kim et al., p. 1404.


Assuntos
Disseminação de Informação , National Cancer Institute (U.S.) , Neoplasias , Humanos , Estados Unidos , Neoplasias/metabolismo , Disseminação de Informação/métodos , Pesquisa Biomédica , Genômica/métodos , Animais , Proteômica/métodos
2.
Cancer Res ; 84(9): 1396-1403, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488504

RESUMO

The NCI's Cloud Resources (CR) are the analytical components of the Cancer Research Data Commons (CRDC) ecosystem. This review describes how the three CRs (Broad Institute FireCloud, Institute for Systems Biology Cancer Gateway in the Cloud, and Seven Bridges Cancer Genomics Cloud) provide access and availability to large, cloud-hosted, multimodal cancer datasets, as well as offer tools and workspaces for performing data analysis where the data resides, without download or storage. In addition, users can upload their own data and tools into their workspaces, allowing researchers to create custom analysis workflows and integrate CRDC-hosted data with their own. See related articles by Brady et al., p. 1384, Wang et al., p. 1388, and Kim et al., p. 1404.


Assuntos
Computação em Nuvem , National Cancer Institute (U.S.) , Neoplasias , Humanos , Neoplasias/genética , Estados Unidos , Pesquisa Biomédica , Genômica/métodos , Biologia Computacional/métodos
3.
Cancer Res ; 84(9): 1404-1409, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488510

RESUMO

More than ever, scientific progress in cancer research hinges on our ability to combine datasets and extract meaningful interpretations to better understand diseases and ultimately inform the development of better treatments and diagnostic tools. To enable the successful sharing and use of big data, the NCI developed the Cancer Research Data Commons (CRDC), providing access to a large, comprehensive, and expanding collection of cancer data. The CRDC is a cloud-based data science infrastructure that eliminates the need for researchers to download and store large-scale datasets by allowing them to perform analysis where data reside. Over the past 10 years, the CRDC has made significant progress in providing access to data and tools along with training and outreach to support the cancer research community. In this review, we provide an overview of the history and the impact of the CRDC to date, lessons learned, and future plans to further promote data sharing, accessibility, interoperability, and reuse. See related articles by Brady et al., p. 1384, Wang et al., p. 1388, and Pot et al., p. 1396.


Assuntos
Disseminação de Informação , National Cancer Institute (U.S.) , Neoplasias , Humanos , Estados Unidos , Neoplasias/terapia , Disseminação de Informação/métodos , Pesquisa Biomédica/tendências , Bases de Dados Factuais , Big Data
6.
Nat Med ; 25(3): 530, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30705421

RESUMO

In the version of this article originally published, the color key in Fig. 1a was wrong. In the Cytogenetics key, the box over t(8;21) originally was green. It should have been red, matching the color of the sections of the pie graphs below the key that were labeled with 15% and 19%.

7.
Blood ; 133(12): 1313-1324, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30617194

RESUMO

Although generally curable with intensive chemotherapy in resource-rich settings, Burkitt lymphoma (BL) remains a deadly disease in older patients and in sub-Saharan Africa. Epstein-Barr virus (EBV) positivity is a feature in more than 90% of cases in malaria-endemic regions, and up to 30% elsewhere. However, the molecular features of BL have not been comprehensively evaluated when taking into account tumor EBV status or geographic origin. Through an integrative analysis of whole-genome and transcriptome data, we show a striking genome-wide increase in aberrant somatic hypermutation in EBV-positive tumors, supporting a link between EBV and activation-induced cytidine deaminase (AICDA) activity. In addition to identifying novel candidate BL genes such as SIN3A, USP7, and CHD8, we demonstrate that EBV-positive tumors had significantly fewer driver mutations, especially among genes with roles in apoptosis. We also found immunoglobulin variable region genes that were disproportionally used to encode clonal B-cell receptors (BCRs) in the tumors. These include IGHV4-34, known to produce autoreactive antibodies, and IGKV3-20, a feature described in other B-cell malignancies but not yet in BL. Our results suggest that tumor EBV status defines a specific BL phenotype irrespective of geographic origin, with particular molecular properties and distinct pathogenic mechanisms. The novel mutation patterns identified here imply rational use of DNA-damaging chemotherapy in some patients with BL and targeted agents such as the CDK4/6 inhibitor palbociclib in others, whereas the importance of BCR signaling in BL strengthens the potential benefit of inhibitors for PI3K, Syk, and Src family kinases among these patients.


Assuntos
Biomarcadores Tumorais/genética , Linfoma de Burkitt/genética , Infecções por Vírus Epstein-Barr/complicações , Genes de Imunoglobulinas , Genoma Humano , Mutação , Transcriptoma , Adolescente , Adulto , Linfoma de Burkitt/patologia , Linfoma de Burkitt/virologia , Criança , Pré-Escolar , Estudos de Coortes , Citidina Desaminase/genética , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Feminino , Seguimentos , Herpesvirus Humano 4/isolamento & purificação , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Prognóstico , Adulto Jovem
8.
Nature ; 562(7727): 373-379, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30209392

RESUMO

Mixed phenotype acute leukaemia (MPAL) is a high-risk subtype of leukaemia with myeloid and lymphoid features, limited genetic characterization, and a lack of consensus regarding appropriate therapy. Here we show that the two principal subtypes of MPAL, T/myeloid (T/M) and B/myeloid (B/M), are genetically distinct. Rearrangement of ZNF384 is common in B/M MPAL, and biallelic WT1 alterations are common in T/M MPAL, which shares genomic features with early T-cell precursor acute lymphoblastic leukaemia. We show that the intratumoral immunophenotypic heterogeneity characteristic of MPAL is independent of somatic genetic variation, that founding lesions arise in primitive haematopoietic progenitors, and that individual phenotypic subpopulations can reconstitute the immunophenotypic diversity in vivo. These findings indicate that the cell of origin and founding lesions, rather than an accumulation of distinct genomic alterations, prime tumour cells for lineage promiscuity. Moreover, these findings position MPAL in the spectrum of immature leukaemias and provide a genetically informed framework for future clinical trials of potential treatments for MPAL.


Assuntos
Leucemia Aguda Bifenotípica/genética , Leucemia Aguda Bifenotípica/patologia , Linhagem da Célula/genética , Análise Mutacional de DNA , Feminino , Variação Genética/genética , Genoma Humano/genética , Genômica , Humanos , Imunofenotipagem , Leucemia Aguda Bifenotípica/classificação , Masculino , Modelos Genéticos , Mutação/genética , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Transativadores/genética
10.
Nat Med ; 24(1): 103-112, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227476

RESUMO

We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Children's Oncology Group (COG) AML trials. The COG-National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases. In contrast, somatic structural variants, including new gene fusions and focal deletions of MBNL1, ZEB2 and ELF1, were disproportionately prevalent in young individuals as compared to adults. Conversely, mutations in DNMT3A and TP53, which were common in adults, were conspicuously absent from virtually all pediatric cases. New mutations in GATA2, FLT3 and CBL and recurrent mutations in MYC-ITD, NRAS, KRAS and WT1 were frequent in pediatric AML. Deletions, mutations and promoter DNA hypermethylation convergently impacted Wnt signaling, Polycomb repression, innate immune cell interactions and a cluster of zinc finger-encoding genes associated with KMT2A rearrangements. These results highlight the need for and facilitate the development of age-tailored targeted therapies for the treatment of pediatric AML.


Assuntos
Leucemia Mieloide Aguda/genética , Mutação , Criança , Aberrações Cromossômicas , Metilação de DNA , Humanos , Transcriptoma
12.
Front Cell Dev Biol ; 5: 83, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28983483

RESUMO

Advancements in next-generation sequencing and other -omics technologies are accelerating the detailed molecular characterization of individual patient tumors, and driving the evolution of precision medicine. Cancer is no longer considered a single disease, but rather, a diverse array of diseases wherein each patient has a unique collection of germline variants and somatic mutations. Molecular profiling of patient-derived samples has led to a data explosion that could help us understand the contributions of environment and germline to risk, therapeutic response, and outcome. To maximize the value of these data, an interdisciplinary approach is paramount. The National Cancer Institute (NCI) has initiated multiple projects to characterize tumor samples using multi-omic approaches. These projects harness the expertise of clinicians, biologists, computer scientists, and software engineers to investigate cancer biology and therapeutic response in multidisciplinary teams. Petabytes of cancer genomic, transcriptomic, epigenomic, proteomic, and imaging data have been generated by these projects. To address the data analysis challenges associated with these large datasets, the NCI has sponsored the development of the Genomic Data Commons (GDC) and three Cloud Resources. The GDC ensures data and metadata quality, ingests and harmonizes genomic data, and securely redistributes the data. During its pilot phase, the Cloud Resources tested multiple cloud-based approaches for enhancing data access, collaboration, computational scalability, resource democratization, and reproducibility. These NCI-led efforts are continuously being refined to better support open data practices and precision oncology, and to serve as building blocks of the NCI Cancer Research Data Commons.

13.
Nat Genet ; 49(10): 1487-1494, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825729

RESUMO

We performed genome-wide sequencing and analyzed mRNA and miRNA expression, DNA copy number, and DNA methylation in 117 Wilms tumors, followed by targeted sequencing of 651 Wilms tumors. In addition to genes previously implicated in Wilms tumors (WT1, CTNNB1, AMER1, DROSHA, DGCR8, XPO5, DICER1, SIX1, SIX2, MLLT1, MYCN, and TP53), we identified mutations in genes not previously recognized as recurrently involved in Wilms tumors, the most frequent being BCOR, BCORL1, NONO, MAX, COL6A3, ASXL1, MAP3K4, and ARID1A. DNA copy number changes resulted in recurrent 1q gain, MYCN amplification, LIN28B gain, and MIRLET7A loss. Unexpected germline variants involved PALB2 and CHEK2. Integrated analyses support two major classes of genetic changes that preserve the progenitor state and/or interrupt normal development.


Assuntos
Genes Neoplásicos , Neoplasias Renais/genética , Tumor de Wilms/genética , Aneuploidia , Metilação de DNA , Epigênese Genética , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Mutação em Linhagem Germinativa , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Conformação Proteica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética
15.
Cancer Res ; 76(8): 2197-205, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26941285

RESUMO

The genomic and clinical information used to develop and implement therapeutic approaches for acute myelogenous leukemia (AML) originated primarily from adult patients and has been generalized to patients with pediatric AML. However, age-specific molecular alterations are becoming more evident and may signify the need to age-stratify treatment regimens. The NCI/COG TARGET-AML initiative used whole exome capture sequencing (WXS) to interrogate the genomic landscape of matched trios representing specimens collected upon diagnosis, remission, and relapse from 20 cases of de novo childhood AML. One hundred forty-five somatic variants at diagnosis (median 6 mutations/patient) and 149 variants at relapse (median 6.5 mutations) were identified and verified by orthogonal methodologies. Recurrent somatic variants [in (greater than or equal to) 2 patients] were identified for 10 genes (FLT3, NRAS, PTPN11, WT1, TET2, DHX15, DHX30, KIT, ETV6, KRAS), with variable persistence at relapse. The variant allele fraction (VAF), used to measure the prevalence of somatic mutations, varied widely at diagnosis. Mutations that persisted from diagnosis to relapse had a significantly higher diagnostic VAF compared with those that resolved at relapse (median VAF 0.43 vs. 0.24, P < 0.001). Further analysis revealed that 90% of the diagnostic variants with VAF >0.4 persisted to relapse compared with 28% with VAF <0.2 (P < 0.001). This study demonstrates significant variability in the mutational profile and clonal evolution of pediatric AML from diagnosis to relapse. Furthermore, mutations with high VAF at diagnosis, representing variants shared across a leukemic clonal structure, may constrain the genomic landscape at relapse and help to define key pathways for therapeutic targeting. Cancer Res; 76(8); 2197-205. ©2016 AACR.


Assuntos
Perfilação da Expressão Gênica , Leucemia Mieloide Aguda/genética , Mutação , Adolescente , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Feminino , Humanos , Lactente , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/patologia , Masculino , Recidiva
16.
Nat Commun ; 6: 10013, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26635203

RESUMO

Wilms tumour is an embryonal tumour of childhood that closely resembles the developing kidney. Genomic changes responsible for the development of the majority of Wilms tumours remain largely unknown. Here we identify recurrent mutations within Wilms tumours that involve the highly conserved YEATS domain of MLLT1 (ENL), a gene known to be involved in transcriptional elongation during early development. The mutant MLLT1 protein shows altered binding to acetylated histone tails. Moreover, MLLT1-mutant tumours show an increase in MYC gene expression and HOX dysregulation. Patients with MLLT1-mutant tumours present at a younger age and have a high prevalence of precursor intralobar nephrogenic rests. These data support a model whereby activating MLLT1 mutations early in renal development result in the development of Wilms tumour.


Assuntos
Neoplasias Renais/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Tumor de Wilms/genética , Estudos de Coortes , Histonas/genética , Histonas/metabolismo , Humanos , Rim/metabolismo , Neoplasias Renais/metabolismo , Mutação , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Tumor de Wilms/metabolismo
17.
Nucleic Acids Res ; 38(Database issue): D408-14, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19843611

RESUMO

Pathema (http://pathema.jcvi.org) is one of the eight Bioinformatics Resource Centers (BRCs) funded by the National Institute of Allergy and Infectious Disease (NIAID) designed to serve as a core resource for the bio-defense and infectious disease research community. Pathema strives to support basic research and accelerate scientific progress for understanding, detecting, diagnosing and treating an established set of six target NIAID Category A-C pathogens: Category A priority pathogens; Bacillus anthracis and Clostridium botulinum, and Category B priority pathogens; Burkholderia mallei, Burkholderia pseudomallei, Clostridium perfringens and Entamoeba histolytica. Each target pathogen is represented in one of four distinct clade-specific Pathema web resources and underlying databases developed to target the specific data and analysis needs of each scientific community. All publicly available complete genome projects of phylogenetically related organisms are also represented, providing a comprehensive collection of organisms for comparative analyses. Pathema facilitates the scientific exploration of genomic and related data through its integration with web-based analysis tools, customized to obtain, display, and compute results relevant to ongoing pathogen research. Pathema serves the bio-defense and infectious disease research community by disseminating data resulting from pathogen genome sequencing projects and providing access to the results of inter-genomic comparisons for these organisms.


Assuntos
Infecções Bacterianas/microbiologia , Doenças Transmissíveis/microbiologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Sequência de Aminoácidos , Animais , Infecções Bacterianas/diagnóstico , Biologia Computacional/tendências , Genoma Bacteriano , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Dados de Sequência Molecular , National Institute of Allergy and Infectious Diseases (U.S.) , Homologia de Sequência de Aminoácidos , Software , Estados Unidos
18.
Nucleic Acids Res ; 38(Database issue): D340-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19892825

RESUMO

The Comprehensive Microbial Resource or CMR (http://cmr.jcvi.org) provides a web-based central resource for the display, search and analysis of the sequence and annotation for complete and publicly available bacterial and archaeal genomes. In addition to displaying the original annotation from GenBank, the CMR makes available secondary automated structural and functional annotation across all genomes to provide consistent data types necessary for effective mining of genomic data. Precomputed homology searches are stored to allow meaningful genome comparisons. The CMR supplies users with over 50 different tools to utilize the sequence and annotation data across one or more of the 571 currently available genomes. At the gene level users can view the gene annotation and underlying evidence. Genome level information includes whole genome graphical displays, biochemical pathway maps and genome summary data. Comparative tools display analysis between genomes with homology and genome alignment tools, and searches across the accessions, annotation, and evidence assigned to all genes/genomes are available. The data and tools on the CMR aid genomic research and analysis, and the CMR is included in over 200 scientific publications. The code underlying the CMR website and the CMR database are freely available for download with no license restrictions.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Genes Bacterianos , Biologia Computacional/tendências , Genoma Bacteriano , Armazenamento e Recuperação da Informação/métodos , Internet , Estrutura Terciária de Proteína , Software
20.
Stand Genomic Sci ; 2(2): 229-37, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21304707

RESUMO

The JCVI metagenomics analysis pipeline provides for the efficient and consistent annotation of shotgun metagenomics sequencing data for sampling communities of prokaryotic organisms. The process can be equally applied to individual sequence reads from traditional Sanger capillary electrophoresis sequences, newer technologies such as 454 pyrosequencing, or sequence assemblies derived from one or more of these data types. It includes the analysis of both coding and non-coding genes, whether full-length or, as is often the case for shotgun metagenomics, fragmentary. The system is designed to provide the best-supported conservative functional annotation based on a combination of trusted homology-based scientific evidence and computational assertions and an annotation value hierarchy established through extensive manual curation. The functional annotation attributes assigned by this system include gene name, gene symbol, GO terms, EC numbers, and JCVI functional role categories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...